Unifying Abstract Inexact Convergence Theorems and Block Coordinate Variable Metric iPiano

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unifying abstract inexact convergence theorems for descent methods and block coordinate variable metric iPiano

An abstract convergence theorem for a class of descent method that explicitly models relative errors is proved. The convergence theorem generalizes and unifies several recent abstract convergence theorems, and is applicable to possibly non-smooth and non-convex lower semi-continuous functions that satisfy the Kurdyka– Lojasiewicz inequality, which comprises a huge class of problems. The descent...

متن کامل

A block coordinate variable metric forward-backward algorithm

A number of recent works have emphasized the prominent role played by the KurdykaLojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of a non necessarily convex differentiable function and a non necessaril...

متن کامل

A Class of Inexact Variable Metric Proximal Point Algorithms

For the problem of solving maximal monotone inclusions, we present a rather general class of algorithms, which contains hybrid inexact proximal point methods as a special case and allows for the use of a variable metric in subproblems. The global convergence and local linear rate of convergence are established under standard assumptions. We demonstrate the advantage of variable metric implement...

متن کامل

On the Convergence of Block Coordinate Descent Type Methods

In this paper we study smooth convex programming problems where the decision variables vector is split into several blocks of variables. We analyze the block coordinate gradient projection method in which each iteration consists of performing a gradient projection step with respect to a certain block taken in a cyclic order. Global sublinear rate of convergence of this method is established and...

متن کامل

Convergence Theorems of the Iterative Schemes in Convex Metric Spaces

The purpose of this paper is to study the convergence problem of Mann and Ishikawa type iterative schemes of weakly contractive mapping in a complete convex metric space. We establish the results on invariant approximation for the mapping defined on a class of nonconvex sets in a convex metric space. Finally, we obtain the existence of common fixed points of two asymptotically nonexpansive mapp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2019

ISSN: 1052-6234,1095-7189

DOI: 10.1137/17m1124085